multiml.agent.RandomSearchAgent
- class multiml.agent.RandomSearchAgent(samplings=None, seed=0, metric_type=None, num_workers=None, context='spawn', dump_all_results=False, disable_tqdm=True, **kwargs)
Agent executing random search..
- __init__(samplings=None, seed=0, metric_type=None, num_workers=None, context='spawn', dump_all_results=False, disable_tqdm=True, **kwargs)
Initialize simple agent.
- Parameters:
samplings (int or list) – If int, number of random samplings. If list, indexes of combination.
seed (int) – seed of random samplings.
metric_type (str) – ‘min’ or ‘max’ for indicating direction of metric optimization. If it is None,
typeis retrieved from metric class instance.num_workers (int or list) – number of workers for multiprocessing or lsit of GPU ids. If
num_workersis given, multiprocessing is enabled.context (str) – fork (default) or spawn.
dump_all_results (bool) – dump all results or not.
disable_tqdm (bool) – enable tqdm bar.
Methods
__init__([samplings, seed, metric_type, ...])Initialize simple agent.
execute()Execute simple agent.
execute_differentiable(subtasktuples, counter)Execute connection model.
execute_finalize()Execute and finalize base agent.
execute_jobs(ctx, queue, args)(expert method) Execute multiprocessing jobs.
execute_pipeline(subtasktuples, counter[, trial])Execute pipeline.
execute_pool_jobs(ctx, queue, args)(expert method) Execute multiprocessing pool jobs.
execute_subtasktuples(subtasktuples, counter)Execute given subtasktuples.
execute_wrapper(queue, subtasktuples, ...)(expert method) Wrapper method to execute multiprocessing pipeline.
finalize()Finalize grid scan agent.
Attributes
Return history of execution.
metricReturn metric of base agent.
resultReturn result of execution.
saverReturn saver of base agent.
storegateReturn storegate of base agent.
task_schedulerReturn task_scheduler of base agent.
- __init__(samplings=None, seed=0, metric_type=None, num_workers=None, context='spawn', dump_all_results=False, disable_tqdm=True, **kwargs)
Initialize simple agent.
- Parameters:
samplings (int or list) – If int, number of random samplings. If list, indexes of combination.
seed (int) – seed of random samplings.
metric_type (str) – ‘min’ or ‘max’ for indicating direction of metric optimization. If it is None,
typeis retrieved from metric class instance.num_workers (int or list) – number of workers for multiprocessing or lsit of GPU ids. If
num_workersis given, multiprocessing is enabled.context (str) – fork (default) or spawn.
dump_all_results (bool) – dump all results or not.
disable_tqdm (bool) – enable tqdm bar.