multiml.task.pytorch.modules.mlp module
- class multiml.task.pytorch.modules.mlp.MLPBlock(layers, activation, activation_last=None, batch_norm=False, initialize=True, input_shape=None, output_shape=None, *args, **kwargs)
Bases:
Module
- __init__(layers, activation, activation_last=None, batch_norm=False, initialize=True, input_shape=None, output_shape=None, *args, **kwargs)
- Parameters:
layers (list) – list of hidden layers
activation (str) – activation function for MLP
activation_last (str) – activation function for the MLP last layer
batch_norm (bool) – use batch normalization
*args – Variable length argument list
**kwargs – Arbitrary keyword arguments
- forward(x)
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- training: bool