multiml.task.pytorch.modules.asng module
ASNG-NAS.
- class multiml.task.pytorch.modules.asng.AdaptiveSNG(categories=None, integers=None, alpha=1.5, delta_init=1.0, lam=2, delta_max=inf, init_theta_cat=None, init_theta_int=None, threshold=0.1, patience=-1, range_restriction=True)
Bases:
object
Adaptive Stochastic Natural Gradient for Categorical Distribution.
- __init__(categories=None, integers=None, alpha=1.5, delta_init=1.0, lam=2, delta_max=inf, init_theta_cat=None, init_theta_int=None, threshold=0.1, patience=-1, range_restriction=True)
AdaptiveSNG.
- get_lambda()
- check_converge()
- converge_counter()
- update_parameters(fnorm_cat, fnorm_int, hstack)
- most_likely_value()
- get_thetas()
- set_thetas(theta_cat, theta_int)
- sampling()
- update_theta(c_cat, c_int, losses)
- class multiml.task.pytorch.modules.asng.AdaptiveSNG_cat(categories=None, integers=None, alpha=1.5, delta_init=1.0, lam=2, delta_max=inf, init_theta_cat=None, init_theta_int=None, threshold=0.1, patience=-1, range_restriction=True)
Bases:
AdaptiveSNG
- check_converge()
- most_likely_value()
- get_thetas()
- set_thetas(theta_cat, theta_int)
- sampling()
- update_theta(c_cat, c_int, losses)
- class multiml.task.pytorch.modules.asng.AdaptiveSNG_int(categories=None, integers=None, alpha=1.5, delta_init=1.0, lam=2, delta_max=inf, init_theta_cat=None, init_theta_int=None, threshold=0.1, patience=-1, range_restriction=True)
Bases:
AdaptiveSNG
- check_converge()
- most_likely_value()
- get_thetas()
- set_thetas(theta_cat, theta_int)
- sampling()
- update_theta(c_cat, c_int, losses)