multiml.task.keras.modules.mlp module
- class multiml.task.keras.modules.mlp.MLPBlock(*args, **kwargs)
Bases:
Model
- __init__(layers=None, activation=None, activation_last=None, kernel_regularizer=None, bias_regularizer=None, batch_norm=False, *args, **kwargs)
Constructor.
- Parameters:
layers (list) – list of hidden layers
activation (str) – activation function for MLP
activation_last (str) – activation function for the MLP last layer
batch_norm (bool) – use batch normalization
kernel_regularizer (str) – kernel regularizer
bias_regularizer (str) – bias regularizer
*args – Variable length argument list
**kwargs – Arbitrary keyword arguments
- call(input_tensor, training=False)
Calls the model on new inputs.
In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs).
- Parameters:
inputs – A tensor or list of tensors.
training – Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode.
mask – A mask or list of masks. A mask can be either a tensor or None (no mask).
- Returns:
A tensor if there is a single output, or a list of tensors if there are more than one outputs.