multiml.task.keras.modules.conv2d module
- class multiml.task.keras.modules.conv2d.Conv2DBlock(*args, **kwargs)
Bases:
Model
- __init__(layers_conv2d=None, conv2d_padding='valid', *args, **kwargs)
Constructor.
- Parameters:
layers_conv2d (list(tuple(str, dict))) – configs of conv2d layer. list of tuple(op_name, op_args).
conv2d_padding (str) – padding option of conv2d (valid or same)
*args – Variable length argument list
**kwargs – Arbitrary keyword arguments
- call(input_tensor, training=False)
Calls the model on new inputs.
In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs).
- Parameters:
inputs – A tensor or list of tensors.
training – Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode.
mask – A mask or list of masks. A mask can be either a tensor or None (no mask).
- Returns:
A tensor if there is a single output, or a list of tensors if there are more than one outputs.