multiml.agent.metric module
Collection of pre-defined Metric classes.
- class multiml.agent.metric.Metric
Bases:
object
Abstraction class of metric calculation.
- abstract calculate()
Return calculated metric.
- class multiml.agent.metric.BaseMetric(storegate=None, pred_var_name='pred', true_var_name='true', var_names=None, phase='test', data_id=None)
Bases:
Metric
Base class of metric calculation.
All Metric class need to inherit this
BaseMetric
class. Metric class is usually passed to agent class to calculate metric.Examples
>>> metric = BaseMetric(storegate=storegate, >>> pred_var_name='pred', >>> true_var_name='true') >>> metric.calculate()
- __init__(storegate=None, pred_var_name='pred', true_var_name='true', var_names=None, phase='test', data_id=None)
Initialize the base class.
- Parameters:
storegate (Storegate) –
Storegate
class instance.pred_var_name (str) – name of variable for predicted values.
true_var_name (str) – name of variable for true values.
var_names (str) – ‘pred true’ variable names for shortcut.
phase (str) – ‘train’ or ‘valid’ or ‘test’ phase to calculate metric.
data_id (str) – specify
data_id
of storegate.
- property storegate
Returns storegate of the base metric.
- calculate()
Returns calculated metric.
Users need to implement algorithms.
- property name
Returns name of metric.
- property pred_var_name
Returns pred_var_name of metric,
- property true_var_name
Returns true_var_name of metric.
- property phase
Returns phase of metric.
- property data_id
Returns data_id of metric.
- property type
Return type of metric (e.f.
min).
- get_true_pred_data()
Return true and pred data.
If special variable active is available, only samples with active is True are selected.
- Returns:
true and pred values.
- Return type:
ndarray, ndarray
- class multiml.agent.metric.ZeroMetric(**kwargs)
Bases:
BaseMetric
A dummy metric class to return always zero.
- __init__(**kwargs)
Initialize ZeroMetric.
- calculate()
Returns zero.
- class multiml.agent.metric.RandomMetric(**kwargs)
Bases:
BaseMetric
A dummy metric class to return random value.
- __init__(**kwargs)
Initialize RandomMetric.
- calculate()
Return random value.
- class multiml.agent.metric.ValueMetric(**kwargs)
Bases:
BaseMetric
A metric class to return a single value.
- __init__(**kwargs)
Initialize ValueMetric.
- calculate()
Returns value.
- class multiml.agent.metric.MSEMetric(**kwargs)
Bases:
BaseMetric
A metric class to return Mean Square Error.
- __init__(**kwargs)
Initialize MSEMetric.
- calculate()
Calculate MSE.
- class multiml.agent.metric.ACCMetric(**kwargs)
Bases:
BaseMetric
A metric class to return ACC.
- __init__(**kwargs)
Initialize ACCMetric.
- calculate()
Calculate ACC.
- class multiml.agent.metric.AUCMetric(**kwargs)
Bases:
BaseMetric
A metric class to return AUC.
- __init__(**kwargs)
Initialize AUCMetric.
- calculate()
Calculate AUC.