multiml.agent.keras package
Submodules
Module contents
- class multiml.agent.keras.KerasConnectionRandomSearchAgent(freeze_model_weights=False, do_pretraining=True, connectiontask_name=None, connectiontask_args={}, **kwargs)
Bases:
ConnectionRandomSearchAgent
Keras implementation for ConnectionRandomSearchAgent.
- class ModelConnectionTask(subtasks, loss_weights=None, variable_mapping=None, **kwargs)
Bases:
ModelConnectionTask
,KerasBaseTask
Keras implementation of ModelConnectionTask.
- build_model()
Build model.
- class multiml.agent.keras.KerasEnsembleAgent(ensembletask_args={}, **kwargs)
Bases:
KerasConnectionRandomSearchAgent
Agent packing subtasks using Keras EnsembelModel.
- __init__(ensembletask_args={}, **kwargs)
- Parameters:
ensembletask_args (dict) – args for EnsembleTask
**kwargs – Arbitrary keyword arguments
- execute()
Execute.
- class multiml.agent.keras.KerasDartsAgent(select_one_models=True, use_original_darts_optimization=True, dartstask_args={}, **kwargs)
Bases:
KerasEnsembleAgent
Model selection agent inspired by Differential Architecture Search (DARTS)
- __init__(select_one_models=True, use_original_darts_optimization=True, dartstask_args={}, **kwargs)
- Parameters:
select_one_models (bool) – (Expert option) If false, all models are kept for the final prediction
use_original_darts_optimization (bool) – (Expert option) If false, both model parameter and alpha parameters are simultaneously trained.
dartstask_args (dict) – args for DARTSTask
**kwargs – Arbitrary keyword arguments