multiml.agent.keras package

Submodules

Module contents

class multiml.agent.keras.KerasConnectionRandomSearchAgent(freeze_model_weights=False, do_pretraining=True, connectiontask_name=None, connectiontask_args={}, **kwargs)

Bases: ConnectionRandomSearchAgent

Keras implementation for ConnectionRandomSearchAgent.

class ModelConnectionTask(subtasks, loss_weights=None, variable_mapping=None, **kwargs)

Bases: ModelConnectionTask, KerasBaseTask

Keras implementation of ModelConnectionTask.

build_model()

Build model.

class multiml.agent.keras.KerasEnsembleAgent(ensembletask_args={}, **kwargs)

Bases: KerasConnectionRandomSearchAgent

Agent packing subtasks using Keras EnsembelModel.

__init__(ensembletask_args={}, **kwargs)
Parameters:
  • ensembletask_args (dict) – args for EnsembleTask

  • **kwargs – Arbitrary keyword arguments

execute()

Execute.

class multiml.agent.keras.KerasDartsAgent(select_one_models=True, use_original_darts_optimization=True, dartstask_args={}, **kwargs)

Bases: KerasEnsembleAgent

Model selection agent inspired by Differential Architecture Search (DARTS)

__init__(select_one_models=True, use_original_darts_optimization=True, dartstask_args={}, **kwargs)
Parameters:
  • select_one_models (bool) – (Expert option) If false, all models are kept for the final prediction

  • use_original_darts_optimization (bool) – (Expert option) If false, both model parameter and alpha parameters are simultaneously trained.

  • dartstask_args (dict) – args for DARTSTask

  • **kwargs – Arbitrary keyword arguments